Store all simulation parameters and list of fittedmodels.
Methods for global inference and model selection are included.
Active bindings
nb_nodes
List of the umber of nodes for each levels
simulation_parameters
List of parameters of the MLVSBM
affiliation_matrix
Access the affiliation matrix
adjacency_matrix
Access the list of adjacency_matrix
memberships
Access the list of the clusterings
fittedmodels
Get the list of selected fitted FitMLVSBM objects
ICL
A summary table of selected fitted models and ICL model selection criterion
ICL_sbm
Summary table of ICL by levels
tmp_fittedmodels
A list of all fitted FitMLVSBM objects
fittedmodels_sbm
A list of selected fitted FitSBM objects of each levels
max_clusters
Access the list of maximum model size
min_clusters
Access the list of minimum model size
directed
Access the list of boolean for levels direction
directed
Access the list of the distribution used for each levels
nb_levels
Access the number of levels in the network
Methods
Method estimate_level()
Usage
GenMLVSBM$estimate_level(
level = NULL,
Q_min = 1,
Q_max = 10,
Z = NULL,
init = "hierarchical",
depth = 1,
nb_cores = NULL
)
Method estimate_sbm_neighbours()
Usage
GenMLVSBM$estimate_sbm_neighbours(
level = NULL,
Q = NULL,
Q_min = 1,
Q_max = 10,
fit = NULL,
nb_cores = NULL,
init = NULL
)
Method estimate_sbm_from_neighbours()
Usage
GenMLVSBM$estimate_sbm_from_neighbours(
level = NULL,
Q = NULL,
fits = NULL,
nb_cores = NULL
)
Method estimate_sbm()
Usage
GenMLVSBM$estimate_sbm(level = NULL, Q = Q, Z = NULL, init = "hierarchical")
Method mcestimate()
Usage
GenMLVSBM$mcestimate(Q, Z = NULL, init = "hierarchical", independent = FALSE)
Method estimate_neighbours()
Usage
GenMLVSBM$estimate_neighbours(
level,
fit = NULL,
Q,
independent = independent,
nb_cores = NULL
)
Method estimate_one()
Usage
GenMLVSBM$estimate_one(
Q,
Z = NULL,
independent = FALSE,
init = "hierarchical",
nb_cores = NULL
)
Method estimate_all_bm()
Usage
GenMLVSBM$estimate_all_bm(
Q = NULL,
Z = NULL,
independent = FALSE,
clear = TRUE,
nb_cores = NULL
)
Method new()
Constructor for R6 class MLVSBM
Usage
GenMLVSBM$new(
n = NULL,
X = NULL,
A = NULL,
L = NULL,
Z = NULL,
directed = NULL,
sim_param = NULL,
distribution = NULL
)
Arguments
n
A list of size 2, the number of nodes
X
A list of L adjacency matrices
A
A list of L-1 affiliation matrices
Z
A list of L vectors, the blocks membership
directed
A vector of L booleans
sim_param
A list of MLVSBM parameters for simulating networks
distribution
The distributions of the interactions ("bernoulli")
Method findmodel()
Find a fitted model of a given size
Usage
GenMLVSBM$findmodel(nb_clusters = NA, fit = NA)
Arguments
nb_clusters
A list of the size of the model
fit
if fit = "best" return the best model according to the ICL
Returns
A FitMLVSBM object
Method clearmodels()
delete all fitted models
Method addmodel()
Added a FitMLVSBM object to the list of fitted model
Arguments
fit
The FitMLVSBM object to be added
Method clone()
The objects of this class are cloneable with this method.
Usage
GenMLVSBM$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.